pmcore/structs/
theta.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
use std::fmt::Debug;

use faer::Mat;

/// [Theta] is a structure that holds the support points
/// These represent the joint population parameter distribution
///
/// Each row represents a support points, and each column a parameter
#[derive(Clone, PartialEq)]
pub struct Theta {
    matrix: Mat<f64>,
    random: Vec<(String, f64, f64)>,
    fixed: Vec<(String, f64)>,
}

impl Default for Theta {
    fn default() -> Self {
        Theta {
            matrix: Mat::new(),
            random: Vec::new(),
            fixed: Vec::new(),
        }
    }
}

impl Theta {
    pub fn new() -> Self {
        Theta::default()
    }

    pub(crate) fn from_parts(
        matrix: Mat<f64>,
        random: Vec<(String, f64, f64)>,
        fixed: Vec<(String, f64)>,
    ) -> Self {
        Theta {
            matrix,
            random,
            fixed,
        }
    }

    /// Get the matrix containing parameter values
    ///
    /// The matrix is a 2D array where each row represents a support point, and each column a parameter
    pub fn matrix(&self) -> &Mat<f64> {
        &self.matrix
    }

    /// Set the matrix containing parameter values
    pub fn set_matrix(&mut self, matrix: Mat<f64>) {
        self.matrix = matrix;
    }

    /// Get the number of support points, equal to the number of rows in the matrix
    pub fn nspp(&self) -> usize {
        self.matrix.nrows()
    }

    /// Get the parameter names
    pub fn param_names(&self) -> Vec<String> {
        self.random
            .iter()
            .map(|(name, _, _)| name.clone())
            .collect()
    }

    /// Modify the [Theta::matrix] to only include the rows specified by `indices`
    pub(crate) fn filter_indices(&mut self, indices: &[usize]) {
        let matrix = self.matrix.to_owned();

        let new = Mat::from_fn(indices.len(), matrix.ncols(), |r, c| {
            *matrix.get(indices[r], c)
        });

        self.matrix = new;
    }

    /// Forcibly add a support point to the matrix
    pub(crate) fn add_point(&mut self, spp: &[f64]) {
        self.matrix
            .resize_with(self.matrix.nrows() + 1, self.matrix.ncols(), |_, i| spp[i]);
    }

    /// Suggest a new support point to add to the matrix
    /// The point is only added if it is at least `min_dist` away from all existing support points
    /// and within the limits specified by `limits`
    pub(crate) fn suggest_point(&mut self, spp: &[f64], min_dist: f64, limits: &[(f64, f64)]) {
        if self.check_point(spp, min_dist, limits) {
            self.add_point(spp);
        }
    }

    /// Check if a point is at least `min_dist` away from all existing support points
    pub(crate) fn check_point(&self, spp: &[f64], min_dist: f64, limits: &[(f64, f64)]) -> bool {
        if self.matrix.nrows() == 0 {
            return true;
        }

        for row_idx in 0..self.matrix.nrows() {
            let mut squared_dist = 0.0;
            for (i, val) in spp.iter().enumerate() {
                // Normalized squared difference for this dimension
                let normalized_diff =
                    (val - self.matrix.get(row_idx, i)) / (limits[i].1 - limits[i].0);
                squared_dist += normalized_diff * normalized_diff;
            }
            let dist = squared_dist.sqrt();
            if dist <= min_dist {
                return false; // This point is too close to an existing point
            }
        }
        true // Point is sufficiently distant from all existing points
    }

    /// Write the matrix to a CSV file
    pub fn write(&self, path: &str) {
        let mut writer = csv::Writer::from_path(path).unwrap();
        for row in self.matrix.row_iter() {
            writer
                .write_record(row.iter().map(|x| x.to_string()))
                .unwrap();
        }
    }
}

impl Debug for Theta {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        // Write nspp and nsub
        writeln!(f, "\nTheta contains {} support points\n", self.nspp())?;
        // Write the matrix
        self.matrix.row_iter().enumerate().for_each(|(index, row)| {
            writeln!(f, "{index}\t{:?}", row).unwrap();
        });
        Ok(())
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use faer::mat;

    #[test]
    fn test_filter_indices() {
        // Create a 4x2 matrix with recognizable values
        let matrix = mat![[1.0, 2.0], [3.0, 4.0], [5.0, 6.0], [7.0, 8.0]];

        let mut theta = Theta::from_parts(matrix, vec![], vec![]);

        theta.filter_indices(&[0, 3]);

        // Expected result is a 2x2 matrix with filtered rows
        let expected = mat![[1.0, 2.0], [7.0, 8.0]];

        assert_eq!(theta.matrix, expected);
    }

    #[test]
    fn test_add_point() {
        let matrix = mat![[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]];

        let mut theta = Theta::from_parts(matrix, vec![], vec![]);

        theta.add_point(&[7.0, 8.0]);

        let expected = mat![[1.0, 2.0], [3.0, 4.0], [5.0, 6.0], [7.0, 8.0]];

        assert_eq!(theta.matrix, expected);
    }
}