pmcore/routines/
settings.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
use crate::algorithms::Algorithm;
use crate::routines::initialization::Prior;
use crate::routines::output::OutputFile;
use anyhow::{bail, Result};
use pharmsol::prelude::data::ErrorType;
use serde::{Deserialize, Serialize};
use serde_json;
use std::fmt::Display;
use std::path::PathBuf;

/// Contains all settings for PMcore
#[derive(Debug, Deserialize, Clone, Serialize)]
#[serde(deny_unknown_fields)]
pub struct Settings {
    /// General configuration settings
    pub(crate) config: Config,
    /// Parameters to be estimated
    pub(crate) parameters: Parameters,
    /// Defines the error model and polynomial to be used
    pub(crate) error: Error,
    /// Configuration for predictions
    pub(crate) predictions: Predictions,
    /// Configuration for logging
    pub(crate) log: Log,
    /// Configuration for (optional) prior
    pub(crate) prior: Prior,
    /// Configuration for the output files
    pub(crate) output: Output,
    /// Configuration for the convergence criteria
    pub(crate) convergence: Convergence,
    /// Advanced options, mostly hyperparameters, for the algorithm(s)
    pub(crate) advanced: Advanced,
}

impl Settings {
    /// Create a new [SettingsBuilder]
    pub fn builder() -> SettingsBuilder<InitialState> {
        SettingsBuilder::new()
    }

    /// Validate the settings
    pub fn validate(&self) -> Result<()> {
        self.error.validate()?;
        self.predictions.validate()?;
        Ok(())
    }

    /* Getters */
    pub fn config(&self) -> &Config {
        &self.config
    }

    pub fn parameters(&self) -> &Parameters {
        &self.parameters
    }

    pub fn error(&self) -> &Error {
        &self.error
    }

    pub fn predictions(&self) -> &Predictions {
        &self.predictions
    }

    pub fn log(&self) -> &Log {
        &self.log
    }

    pub fn prior(&self) -> &Prior {
        &self.prior
    }

    pub fn output(&self) -> &Output {
        &self.output
    }
    pub fn convergence(&self) -> &Convergence {
        &self.convergence
    }

    pub fn advanced(&self) -> &Advanced {
        &self.advanced
    }

    /* Setters */
    pub fn set_cycles(&mut self, cycles: usize) {
        self.config.cycles = cycles;
    }

    pub fn set_algorithm(&mut self, algorithm: Algorithm) {
        self.config.algorithm = algorithm;
    }

    pub fn set_cache(&mut self, cache: bool) {
        self.config.cache = cache;
    }

    pub fn set_idelta(&mut self, idelta: f64) {
        self.predictions.idelta = idelta;
    }

    pub fn set_tad(&mut self, tad: f64) {
        self.predictions.tad = tad;
    }

    pub fn set_prior(&mut self, prior: Prior) {
        self.prior = prior;
    }

    pub fn disable_output(&mut self) {
        self.output.write = false;
    }

    pub fn set_output_path(&mut self, path: impl Into<String>) {
        self.output.path = parse_output_folder(path.into());
    }

    pub fn set_log_stdout(&mut self, stdout: bool) {
        self.log.stdout = stdout;
    }

    pub fn set_write_logs(&mut self, write: bool) {
        self.log.write = write;
    }

    pub fn set_log_level(&mut self, level: LogLevel) {
        self.log.level = level;
    }

    pub fn set_progress(&mut self, progress: bool) {
        self.config.progress = progress;
    }

    pub fn initialize_logs(&mut self) -> Result<()> {
        crate::routines::logger::setup_log(self)
    }

    /// Writes a copy of the settings to file
    /// The is written to output folder specified in the [Output] and is named `settings.json`.
    pub fn write(&self) -> Result<()> {
        let serialized = serde_json::to_string_pretty(self)
            .map_err(|e| std::io::Error::new(std::io::ErrorKind::Other, e))?;

        let outputfile = OutputFile::new(self.output.path.as_str(), "settings.json")?;
        let mut file = outputfile.file;
        std::io::Write::write_all(&mut file, serialized.as_bytes())?;
        Ok(())
    }
}

/// General configuration settings
#[derive(Debug, Deserialize, Clone, Serialize)]
#[serde(deny_unknown_fields, default)]
pub struct Config {
    /// Maximum number of cycles to run
    pub cycles: usize,
    /// Denotes the algorithm to use
    pub algorithm: Algorithm,
    /// If true (default), cache predicted values
    pub cache: bool,
    /// Should a progress bar be displayed for the first cycle
    ///
    /// The progress bar is not written to logs, but is written to stdout. It incurs a minor performance penalty.
    pub progress: bool,
}

impl Default for Config {
    fn default() -> Self {
        Config {
            cycles: 100,
            algorithm: Algorithm::NPAG,
            cache: true,
            progress: true,
        }
    }
}

/// Defines a parameter to be estimated
///
/// In non-parametric algorithms, parameters must be bounded. The lower and upper bounds are defined by the `lower` and `upper` fields, respectively.
/// Fixed parameters are unknown, but common among all subjects.
#[derive(Debug, Clone, Deserialize, Serialize)]
pub struct Parameter {
    pub(crate) name: String,
    pub(crate) lower: f64,
    pub(crate) upper: f64,
    pub(crate) fixed: bool,
}

impl Parameter {
    /// Create a new parameter
    pub fn new(name: impl Into<String>, lower: f64, upper: f64, fixed: bool) -> Self {
        Self {
            name: name.into(),
            lower,
            upper,
            fixed,
        }
    }
}

/// This structure contains information on all [Parameter]s to be estimated
#[derive(Debug, Clone, Deserialize, Serialize, Default)]
pub struct Parameters {
    pub(crate) parameters: Vec<Parameter>,
}

impl Parameters {
    pub fn new() -> Self {
        Parameters {
            parameters: Vec::new(),
        }
    }

    pub fn add(
        mut self,
        name: impl Into<String>,
        lower: f64,
        upper: f64,
        fixed: bool,
    ) -> Parameters {
        let parameter = Parameter::new(name, lower, upper, fixed);
        self.parameters.push(parameter);
        self
    }

    // Get a parameter by name
    pub fn get(&self, name: impl Into<String>) -> Option<&Parameter> {
        let name = name.into();
        self.parameters.iter().find(|p| p.name == name)
    }

    /// Get the names of the parameters
    pub fn names(&self) -> Vec<String> {
        self.parameters.iter().map(|p| p.name.clone()).collect()
    }
    /// Get the ranges of the parameters
    ///
    /// Returns a vector of tuples, where each tuple contains the lower and upper bounds of the parameter
    pub fn ranges(&self) -> Vec<(f64, f64)> {
        self.parameters.iter().map(|p| (p.lower, p.upper)).collect()
    }
    pub fn len(&self) -> usize {
        self.parameters.len()
    }

    pub fn is_empty(&self) -> bool {
        self.parameters.is_empty()
    }

    pub fn iter(&self) -> std::slice::Iter<'_, Parameter> {
        self.parameters.iter()
    }
}

impl IntoIterator for Parameters {
    type Item = Parameter;
    type IntoIter = std::vec::IntoIter<Parameter>;

    fn into_iter(self) -> Self::IntoIter {
        self.parameters.into_iter()
    }
}

impl From<Vec<Parameter>> for Parameters {
    fn from(parameters: Vec<Parameter>) -> Self {
        Parameters { parameters }
    }
}

#[derive(Debug, Deserialize, Clone, Serialize)]
pub enum ErrorModel {
    Additive,
    Proportional,
}

impl From<ErrorModel> for ErrorType {
    fn from(error_model: ErrorModel) -> ErrorType {
        match error_model {
            ErrorModel::Additive => ErrorType::Add,
            ErrorModel::Proportional => ErrorType::Prop,
        }
    }
}

/// Defines the error model and polynomial to be used
#[derive(Debug, Deserialize, Clone, Serialize)]
#[serde(deny_unknown_fields, default)]
pub struct Error {
    /// The initial value of `gamma` or `lambda`
    pub value: f64,
    /// The error class, either `additive` or `proportional`
    pub model: ErrorModel,
    /// The assay error polynomial
    pub poly: (f64, f64, f64, f64),
}

impl Default for Error {
    fn default() -> Self {
        Error {
            value: 0.0,
            model: ErrorModel::Additive,
            poly: (0.0, 0.1, 0.0, 0.0),
        }
    }
}

impl Error {
    fn new(value: f64, model: ErrorModel, poly: (f64, f64, f64, f64)) -> Self {
        Error { value, model, poly }
    }

    fn validate(&self) -> Result<()> {
        if self.value < 0.0 {
            bail!(format!(
                "Error value must be non-negative, got {}",
                self.value
            ));
        }
        Ok(())
    }

    pub fn error_model(&self) -> ErrorModel {
        self.model.clone()
    }
}

/// This struct contains advanced options and hyperparameters
#[derive(Debug, Deserialize, Clone, Serialize)]
#[serde(deny_unknown_fields, default)]
pub struct Advanced {
    /// The minimum distance required between a candidate point and the existing grid (THETA_D)
    ///
    /// This is general for all non-parametric algorithms
    pub min_distance: f64,
    /// Maximum number of steps in Nelder-Mead optimization
    /// This is used in the [NPOD](crate::algorithms::npod) algorithm, specifically in the [D-optimizer](crate::routines::optimization::d_optimizer)
    pub nm_steps: usize,
    /// Tolerance (in standard deviations) for the Nelder-Mead optimization
    ///
    /// This is used in the [NPOD](crate::algorithms::npod) algorithm, specifically in the [D-optimizer](crate::routines::optimization::d_optimizer)
    pub tolerance: f64,
}

impl Default for Advanced {
    fn default() -> Self {
        Advanced {
            min_distance: 1e-4,
            nm_steps: 100,
            tolerance: 1e-6,
        }
    }
}

#[derive(Debug, Deserialize, Clone, Serialize)]
#[serde(deny_unknown_fields, default)]
/// This struct contains the convergence criteria for the algorithm
pub struct Convergence {
    /// The objective function convergence criterion for the algorithm
    ///
    /// The objective function is the negative log likelihood
    /// Previously referred to as THETA_G
    pub likelihood: f64,
    /// The PYL convergence criterion for the algorithm
    ///
    /// P(Y|L) represents the probability of the observation given its weighted support
    /// Previously referred to as THETA_F
    pub pyl: f64,
    /// Precision convergence criterion for the algorithm
    ///
    /// The precision variable, sometimes referred to as `eps`, is the distance from existing points in the grid to the candidate point. A candidate point is suggested at a distance of `eps` times the range of the parameter.
    /// For example, if the parameter `alpha` has a range of `[0.0, 1.0]`, and `eps` is `0.1`, then the candidate point will be at a distance of `0.1 * (1.0 - 0.0) = 0.1` from the existing grid point(s).
    /// Previously referred to as THETA_E
    pub eps: f64,
}

impl Default for Convergence {
    fn default() -> Self {
        Convergence {
            likelihood: 1e-4,
            pyl: 1e-2,
            eps: 1e-2,
        }
    }
}

#[derive(Debug, Deserialize, Clone, Serialize)]
#[serde(deny_unknown_fields, default)]
pub struct Predictions {
    /// The interval for which predictions are generated
    pub idelta: f64,
    /// The time after the last dose for which predictions are generated
    ///
    /// Predictions will always be generated until the last event (observation or dose) in the data.
    /// This setting is used to generate predictions beyond the last event if the `tad` if sufficiently large.
    /// This can be useful for generating predictions for a subject who only received a dose, but has no observations.
    pub tad: f64,
}

impl Default for Predictions {
    fn default() -> Self {
        Predictions {
            idelta: 0.12,
            tad: 0.0,
        }
    }
}

impl Predictions {
    /// Validate the prediction settings
    pub fn validate(&self) -> Result<()> {
        if self.idelta < 0.0 {
            bail!("The interval for predictions must be non-negative");
        }
        if self.tad < 0.0 {
            bail!("The time after dose for predictions must be non-negative");
        }
        Ok(())
    }
}

/// The log level, which can be one of the following:
/// - `TRACE`
/// - `DEBUG`
/// - `INFO` (Default)
/// - `WARN`
/// - `ERROR`
#[derive(Debug, Deserialize, Clone, Serialize, Default)]
pub enum LogLevel {
    TRACE,
    DEBUG,
    #[default]
    INFO,
    WARN,
    ERROR,
}

impl From<LogLevel> for tracing::Level {
    fn from(log_level: LogLevel) -> tracing::Level {
        match log_level {
            LogLevel::TRACE => tracing::Level::TRACE,
            LogLevel::DEBUG => tracing::Level::DEBUG,
            LogLevel::INFO => tracing::Level::INFO,
            LogLevel::WARN => tracing::Level::WARN,
            LogLevel::ERROR => tracing::Level::ERROR,
        }
    }
}

impl AsRef<str> for LogLevel {
    fn as_ref(&self) -> &str {
        match self {
            LogLevel::TRACE => "trace",
            LogLevel::DEBUG => "debug",
            LogLevel::INFO => "info",
            LogLevel::WARN => "warn",
            LogLevel::ERROR => "error",
        }
    }
}

impl Display for LogLevel {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        write!(f, "{}", self.as_ref())
    }
}

#[derive(Debug, Deserialize, Clone, Serialize)]
#[serde(deny_unknown_fields, default)]
pub struct Log {
    /// The maximum log level to display, as defined by [LogLevel]
    ///
    /// [LogLevel] is a thin wrapper around `tracing::Level`, but can be serialized
    pub level: LogLevel,
    /// Should the logs be written to a file
    ///
    /// If true, a file will be created in the output folder with the name `log.txt`, or, if [Output::write] is false, in the current directory.
    pub write: bool,
    /// Define if logs should be written to stdout
    pub stdout: bool,
}

impl Default for Log {
    fn default() -> Self {
        Log {
            level: LogLevel::INFO,
            write: false,
            stdout: true,
        }
    }
}

/// Configuration for the output files
#[derive(Debug, Deserialize, Clone, Serialize)]
#[serde(deny_unknown_fields, default)]
pub struct Output {
    /// Whether to write the output files
    pub write: bool,
    /// The (relative) path to write the output files to
    pub path: String,
}

impl Default for Output {
    fn default() -> Self {
        let path = PathBuf::from("outputs/").to_string_lossy().to_string();

        Output { write: true, path }
    }
}

pub struct SettingsBuilder<State> {
    config: Option<Config>,
    parameters: Option<Parameters>,
    error: Option<Error>,
    predictions: Option<Predictions>,
    log: Option<Log>,
    prior: Option<Prior>,
    output: Option<Output>,
    convergence: Option<Convergence>,
    advanced: Option<Advanced>,
    _marker: std::marker::PhantomData<State>,
}

// Marker traits for builder states
pub trait AlgorithmDefined {}
pub trait ParametersDefined {}
pub trait ErrorModelDefined {}

// Implement marker traits for PhantomData states
pub struct InitialState;
pub struct AlgorithmSet;
pub struct ParametersSet;
pub struct ErrorSet;

// Initial state: no algorithm set yet
impl SettingsBuilder<InitialState> {
    pub fn new() -> Self {
        SettingsBuilder {
            config: None,
            parameters: None,
            error: None,
            predictions: None,
            log: None,
            prior: None,
            output: None,
            convergence: None,
            advanced: None,
            _marker: std::marker::PhantomData,
        }
    }

    pub fn set_algorithm(self, algorithm: Algorithm) -> SettingsBuilder<AlgorithmSet> {
        SettingsBuilder {
            config: Some(Config {
                algorithm,
                ..Config::default()
            }),
            parameters: self.parameters,
            error: self.error,
            predictions: self.predictions,
            log: self.log,
            prior: self.prior,
            output: self.output,
            convergence: self.convergence,
            advanced: self.advanced,
            _marker: std::marker::PhantomData,
        }
    }
}

impl Default for SettingsBuilder<InitialState> {
    fn default() -> Self {
        SettingsBuilder::new()
    }
}

// Algorithm is set, move to defining parameters
impl SettingsBuilder<AlgorithmSet> {
    pub fn set_parameters(self, parameters: Parameters) -> SettingsBuilder<ParametersSet> {
        SettingsBuilder {
            config: self.config,
            parameters: Some(parameters),
            error: self.error,
            predictions: self.predictions,
            log: self.log,
            prior: self.prior,
            output: self.output,
            convergence: self.convergence,
            advanced: self.advanced,
            _marker: std::marker::PhantomData,
        }
    }
}

// Parameters are set, move to defining error model
impl SettingsBuilder<ParametersSet> {
    pub fn set_error_model(
        self,
        model: ErrorModel,
        value: f64,
        poly: (f64, f64, f64, f64),
    ) -> SettingsBuilder<ErrorSet> {
        let error = Error::new(value, model, poly);

        SettingsBuilder {
            config: self.config,
            parameters: self.parameters,
            error: Some(error),
            predictions: self.predictions,
            log: self.log,
            prior: self.prior,
            output: self.output,
            convergence: self.convergence,
            advanced: self.advanced,
            _marker: std::marker::PhantomData,
        }
    }
}

// Error model is set, allow optional settings and final build
impl SettingsBuilder<ErrorSet> {
    pub fn build(self) -> Settings {
        Settings {
            config: self.config.unwrap(),
            parameters: self.parameters.unwrap(),
            error: self.error.unwrap(),
            predictions: self.predictions.unwrap_or_default(),
            log: self.log.unwrap_or_default(),
            prior: self.prior.unwrap_or_default(),
            output: self.output.unwrap_or_default(),
            convergence: self.convergence.unwrap_or_default(),
            advanced: self.advanced.unwrap_or_default(),
        }
    }
}

fn parse_output_folder(path: String) -> String {
    // If the path doesn't contain a "#", just return it as is
    if !path.contains("#") {
        return path;
    }

    // If it does contain "#", perform the incrementation logic
    let mut num = 1;
    while std::path::Path::new(&path.replace("#", &num.to_string())).exists() {
        num += 1;
    }

    let result = path.replace("#", &num.to_string());
    result
}

#[cfg(test)]

mod tests {
    use super::*;
    use crate::algorithms::Algorithm;

    #[test]
    fn test_builder() {
        let parameters = Parameters::new()
            .add("Ke", 0.0, 5.0, false)
            .add("V", 10.0, 200.0, true);

        let mut settings = SettingsBuilder::new()
            .set_algorithm(Algorithm::NPAG) // Step 1: Define algorithm
            .set_parameters(parameters) // Step 2: Define parameters
            .set_error_model(ErrorModel::Additive, 5.0, (0.0, 0.1, 0.0, 0.0))
            .build();

        settings.set_cycles(100);

        assert_eq!(settings.config.algorithm, Algorithm::NPAG);
        assert_eq!(settings.config.cycles, 100);
        assert_eq!(settings.config.cache, true);
        assert_eq!(settings.parameters().names(), vec!["Ke", "V"]);
    }
}