1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
#![allow(dead_code)]
use super::output::OutputFile;
use anyhow::{bail, Result};
use config::Config as eConfig;
use pharmsol::prelude::data::ErrorType;
use serde::Deserialize;
use serde_derive::Serialize;
use serde_json;
use std::collections::HashMap;
use toml::Table;
/// Contains all settings for PMcore
#[derive(Debug, Deserialize, Clone, Serialize)]
#[serde(deny_unknown_fields, default)]
pub struct Settings {
/// General configuration settings
pub config: Config,
/// Random parameters to be estimated
pub random: Random,
/// Parameters which are estimated, but fixed for the population
pub fixed: Option<Fixed>,
/// Parameters which are held constant
pub constant: Option<Constant>,
/// Defines the error model and polynomial to be used
pub error: Error,
/// Configuration for predictions
///
/// This struct contains the interval at which to generate predictions, and the time after dose to generate predictions to
pub predictions: Predictions,
/// Configuration for logging
pub log: Log,
/// Configuration for (optional) prior
pub prior: Prior,
/// Configuration for the output files
pub output: Output,
/// Configuration for the convergence criteria
pub convergence: Convergence,
/// Advanced options, mostly hyperparameters, for the algorithm(s)
pub advanced: Advanced,
}
impl Default for Settings {
fn default() -> Self {
Settings {
config: Config::default(),
random: Random::default(),
fixed: None,
constant: None,
error: Error::default(),
predictions: Predictions::default(),
log: Log::default(),
prior: Prior::default(),
convergence: Convergence::default(),
output: Output::default(),
advanced: Advanced::default(),
}
}
}
impl Settings {
/// Validate the settings
pub fn validate(&self) -> Result<()> {
self.random.validate()?;
self.error.validate()?;
self.predictions.validate()?;
Ok(())
}
pub fn new() -> Self {
Settings::default()
}
}
/// General configuration settings
#[derive(Debug, Deserialize, Clone, Serialize)]
#[serde(deny_unknown_fields, default)]
pub struct Config {
/// Maximum number of cycles to run
pub cycles: usize,
/// Denotes the algorithm to use
pub algorithm: String,
/// If true (default), cache predicted values
pub cache: bool,
/// Vector of IDs to include
pub include: Option<Vec<String>>,
/// Vector of IDs to exclude
pub exclude: Option<Vec<String>>,
}
impl Default for Config {
fn default() -> Self {
Config {
cycles: 100,
algorithm: "npag".to_string(),
cache: false,
include: None,
exclude: None,
}
}
}
/// Random parameters to be estimated
///
/// This struct contains the random parameters to be estimated. The parameters are specified as a hashmap, where the key is the name of the parameter, and the value is a tuple containing the upper and lower bounds of the parameter.
///
/// # Example
///
/// ```toml
/// [random]
/// alpha = [0.0, 1.0]
/// beta = [0.0, 1.0]
/// ```
#[derive(Debug, Deserialize, Clone, Serialize)]
#[serde(default)]
pub struct Random {
#[serde(flatten)]
pub parameters: Table,
}
impl Default for Random {
fn default() -> Self {
Random {
parameters: Table::new(),
}
}
}
impl Random {
/// Get the upper and lower bounds of a random parameter from its key
pub fn get(&self, key: &str) -> Option<(f64, f64)> {
self.parameters
.get(key)
.and_then(|v| v.as_array())
.map(|v| {
let lower = v[0].as_float().unwrap();
let upper = v[1].as_float().unwrap();
(lower, upper)
})
}
/// Returns a vector of the names of the random parameters
pub fn names(&self) -> Vec<String> {
self.parameters.keys().cloned().collect()
}
/// Returns a vector of the upper and lower bounds of the random parameters
pub fn ranges(&self) -> Vec<(f64, f64)> {
self.parameters
.values()
.map(|v| {
let lower = v.as_array().unwrap()[0].as_float().unwrap();
let upper = v.as_array().unwrap()[1].as_float().unwrap();
(lower, upper)
})
.collect()
}
/// Validate the boundaries of the random parameters
pub fn validate(&self) -> Result<()> {
for (key, range) in &self.parameters {
let range = range.as_array().unwrap();
let lower = range[0].as_float().unwrap();
let upper = range[1].as_float().unwrap();
if lower >= upper {
bail!(format!(
"In key '{}', lower bound ({}) is not less than upper bound ({})",
key, lower, upper
));
}
}
Ok(())
}
}
/// Parameters which are estimated, but fixed for the population
#[derive(Debug, Deserialize, Clone, Serialize)]
pub struct Fixed {
#[serde(flatten)]
pub parameters: HashMap<String, f64>,
}
impl Default for Fixed {
fn default() -> Self {
Fixed {
parameters: HashMap::new(),
}
}
}
/// Parameters which are held constant
#[derive(Debug, Deserialize, Clone, Serialize)]
pub struct Constant {
#[serde(flatten)]
pub parameters: HashMap<String, f64>,
}
impl Default for Constant {
fn default() -> Self {
Constant {
parameters: HashMap::new(),
}
}
}
/// Defines the error model and polynomial to be used
#[derive(Debug, Deserialize, Clone, Serialize)]
#[serde(deny_unknown_fields, default)]
pub struct Error {
/// The initial value of `gamma` or `lambda`
pub value: f64,
/// The error class, either `additive` or `proportional`
pub class: String,
/// The assay error polynomial
pub poly: (f64, f64, f64, f64),
}
impl Default for Error {
fn default() -> Self {
Error {
value: 0.0,
class: "additive".to_string(),
poly: (0.0, 0.1, 0.0, 0.0),
}
}
}
impl Error {
pub fn validate(&self) -> Result<()> {
if self.value < 0.0 {
bail!(format!(
"Error value must be non-negative, got {}",
self.value
));
}
Ok(())
}
pub fn error_type(&self) -> ErrorType {
match self.class.to_lowercase().as_str() {
"additive" | "l" | "lambda" => ErrorType::Add,
"proportional" | "g" | "gamma" => ErrorType::Prop,
_ => panic!("Error class '{}' not supported. Possible classes are 'gamma' (proportional) or 'lambda' (additive)", self.class),
}
}
}
/// This struct contains advanced options and hyperparameters
#[derive(Debug, Deserialize, Clone, Serialize)]
#[serde(deny_unknown_fields, default)]
pub struct Advanced {
/// The minimum distance required between a candidate point and the existing grid (THETA_D)
///
/// This is general for all non-parametric algorithms
pub min_distance: f64,
/// Maximum number of steps in Nelder-Mead optimization
/// This is used in the [NPOD](crate::algorithms::npod) algorithm, specifically in the [D-optimizer](crate::routines::optimization::d_optimizer)
pub nm_steps: usize,
/// Tolerance (in standard deviations) for the Nelder-Mead optimization
///
/// This is used in the [NPOD](crate::algorithms::npod) algorithm, specifically in the [D-optimizer](crate::routines::optimization::d_optimizer)
pub tolerance: f64,
}
impl Default for Advanced {
fn default() -> Self {
Advanced {
min_distance: 0.12,
nm_steps: 100,
tolerance: 1e-6,
}
}
}
#[derive(Debug, Deserialize, Clone, Serialize)]
#[serde(deny_unknown_fields, default)]
/// This struct contains the convergence criteria for the algorithm
pub struct Convergence {
/// The objective function convergence criterion for the algorithm
///
/// The objective function is the negative log likelihood
/// Previously referred to as THETA_G
pub likelihood: f64,
/// The PYL convergence criterion for the algorithm
///
/// P(Y|L) represents the probability of the observation given its weighted support
/// Previously referred to as THETA_F
pub pyl: f64,
/// Precision convergence criterion for the algorithm
///
/// The precision variable, sometimes referred to as `eps`, is the distance from existing points in the grid to the candidate point. A candidate point is suggested at a distance of `eps` times the range of the parameter.
/// For example, if the parameter `alpha` has a range of `[0.0, 1.0]`, and `eps` is `0.1`, then the candidate point will be at a distance of `0.1 * (1.0 - 0.0) = 0.1` from the existing grid point(s).
/// Previously referred to as THETA_E
pub eps: f64,
}
impl Default for Convergence {
fn default() -> Self {
Convergence {
likelihood: 1e-4,
pyl: 1e-2,
eps: 1e-2,
}
}
}
#[derive(Debug, Deserialize, Clone, Serialize)]
#[serde(deny_unknown_fields, default)]
pub struct Predictions {
/// The interval for which predictions are generated
pub idelta: f64,
/// The time after the last dose for which predictions are generated
///
/// Predictions will always be generated until the last event (observation or dose) in the data.
/// This setting is used to generate predictions beyond the last event if the `tad` if sufficiently large.
/// This can be useful for generating predictions for a subject who only received a dose, but has no observations.
pub tad: f64,
}
impl Default for Predictions {
fn default() -> Self {
Predictions {
idelta: 0.12,
tad: 0.0,
}
}
}
impl Predictions {
/// Validate the prediction settings
pub fn validate(&self) -> Result<()> {
if self.idelta < 0.0 {
bail!("The interval for predictions must be non-negative");
}
if self.tad < 0.0 {
bail!("The time after dose for predictions must be non-negative");
}
Ok(())
}
}
#[derive(Debug, Deserialize, Clone, Serialize)]
#[serde(deny_unknown_fields, default)]
pub struct Log {
/// The maximum log level to display
///
/// The log level is defined as a string, and can be one of the following:
/// - `trace`
/// - `debug`
/// - `info`
/// - `warn`
/// - `error`
pub level: String,
/// The file to write the log to
pub file: String,
/// Whether to write logs
///
/// If set to `false`, a global subscriber will not be set by PMcore.
/// This can be useful when the user wants to use a custom subscriber for a third-party library, or perform benchmarks.
pub write: bool,
}
impl Default for Log {
fn default() -> Self {
Log {
level: String::from("info"),
file: String::from("log.txt"),
write: true,
}
}
}
/// Configuration for the prior
#[derive(Debug, Deserialize, Clone, Serialize)]
#[serde(deny_unknown_fields, default)]
pub struct Prior {
/// The sampler to use for the prior if not supplied
pub sampler: String,
/// The number of points to generate for the prior
pub points: usize,
/// The seed for the random number generator
pub seed: usize,
/// Optionally, the path to a file containing the prior in a CSV-format
///
/// The file should contain the prior in a CSV format, with the first row containing the parameter names, and the subsequent rows containing the values for each parameter.
/// The `prob` column is optional, and will if present be ignored
pub file: Option<String>,
}
impl Default for Prior {
fn default() -> Self {
Prior {
sampler: String::from("sobol"),
points: 2048,
seed: 22,
file: None,
}
}
}
/// Configuration for the output files
#[derive(Debug, Deserialize, Clone, Serialize)]
#[serde(deny_unknown_fields, default)]
pub struct Output {
/// Whether to write the output files
pub write: bool,
/// The (relative) path to write the output files to
pub path: String,
}
impl Default for Output {
fn default() -> Self {
Output {
write: true,
path: String::from("outputs/"),
}
}
}
impl Output {
/// Parses the output folder location
////
/// If a `#` symbol is found, it will automatically increment the number by one.
pub fn parse_output_folder(&mut self) -> Result<()> {
if self.path.is_empty() || self.path == "" {
// Set a default path if none is provided
self.path = Output::default().path;
}
let folder = &self.path;
// Check for the `#` symbol to replace with an incremented number
let count = folder.matches('#').count();
match count {
0 => Ok(()),
1 => {
let mut folder = folder.clone();
let mut num = 1;
while std::path::Path::new(&folder.replace("#", &num.to_string())).exists() {
num += 1;
}
folder = folder.replace("#", &num.to_string());
self.path = folder;
Ok(())
}
_ => {
bail!("Only one `#` symbol is allowed in the setting folder path. Rename the `output_folder` setting in the configuration file and re-run the program.")
}
}
}
}
/// Parses the settings from a TOML configuration file
///
/// This function parses the settings from a TOML configuration file. The settings are validated, and a copy of the settings is written to file.
///
/// Entries in the TOML file may be overridden by environment variables. The environment variables must be prefixed with `PMCORE_`, and the TOML entry must be in uppercase. For example, the TUI may be disabled by setting the environment variable `PMCORE_CONFIG_TUI=false` A single underscore, `_`, is used as the separator for nested entries.
pub fn read(path: impl Into<String>) -> Result<Settings, anyhow::Error> {
let settings_path = path.into();
let parsed = eConfig::builder()
.add_source(config::File::with_name(&settings_path).format(config::FileFormat::Toml))
.add_source(config::Environment::with_prefix("PMCORE").separator("_"))
.build()?;
// Deserialize settings to the Settings struct
let mut settings: Settings = parsed.try_deserialize()?;
// Validate entries
settings.validate()?;
// Parse the output folder
settings.output.parse_output_folder()?;
// Write a copy of the settings to file if output is enabled
if settings.output.write {
if let Err(error) = write_settings_to_file(&settings) {
bail!("Could not write settings to file: {}", error);
}
}
Ok(settings) // Return the settings wrapped in Ok
}
/// Writes a copy of the parsed settings to file
///
/// This function writes a copy of the parsed settings to file.
/// The file is written to output folder specified in the [settings](crate::routines::settings::Settings::paths), and is named `settings.json`.
pub fn write_settings_to_file(settings: &Settings) -> Result<()> {
let serialized = serde_json::to_string_pretty(settings)
.map_err(|e| std::io::Error::new(std::io::ErrorKind::Other, e))?;
let outputfile = OutputFile::new(settings.output.path.as_str(), "settings.json")?;
let mut file = outputfile.file;
std::io::Write::write_all(&mut file, serialized.as_bytes())?;
Ok(())
}