pmcore/routines/initialization/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
use std::fs::File;

use crate::structs::theta::Theta;
use anyhow::{bail, Context, Result};
use faer::Mat;
use serde::{Deserialize, Serialize};

use crate::routines::settings::Settings;

pub mod latin;
pub mod sobol;

/// The sampler used to generate the grid of support points
///
/// The sampler can be one of the following:
///
/// - `Sobol`: Generates a Sobol sequence
/// - `Latin`: Generates a Latin hypercube
/// - `File`: Reads the prior distribution from a CSV file
#[derive(Debug, Deserialize, Clone, Serialize)]
pub enum Prior {
    Sobol(usize, usize),
    Latin(usize, usize),
    File(String),
    #[serde(skip)]
    Theta(Theta),
}

impl Prior {
    pub fn sobol(points: usize, seed: usize) -> Prior {
        Prior::Sobol(points, seed)
    }

    pub fn get_points(&self) -> usize {
        match self {
            Prior::Sobol(points, _) => *points,
            Prior::Latin(points, _) => *points,
            Prior::File(_) => {
                unimplemented!("File-based prior does not have a fixed number of points")
            }
            Prior::Theta(theta) => theta.nspp(),
        }
    }

    pub fn get_seed(&self) -> usize {
        match self {
            Prior::Sobol(_, seed) => *seed,
            Prior::Latin(_, seed) => *seed,
            Prior::File(_) => unimplemented!("File-based prior does not have a fixed seed"),
            Prior::Theta(_) => {
                unimplemented!("Custom prior does not have a fixed seed")
            }
        }
    }
}

impl Default for Prior {
    fn default() -> Self {
        Prior::Sobol(2028, 22)
    }
}

/// This function generates the grid of support points according to the sampler specified in the [Settings]
pub fn sample_space(settings: &Settings) -> Result<Theta> {
    // Otherwise, parse the sampler type and generate the grid
    let prior = match settings.prior() {
        Prior::Sobol(points, seed) => sobol::generate(settings.parameters(), *points, *seed)?,
        Prior::Latin(points, seed) => latin::generate(settings.parameters(), *points, *seed)?,
        Prior::File(ref path) => parse_prior(path, settings)?,
        Prior::Theta(ref theta) => {
            // If a custom prior is provided, return it directly
            return Ok(theta.clone());
        }
    };
    Ok(prior)
}

/// This function reads the prior distribution from a file
pub fn parse_prior(path: &String, settings: &Settings) -> Result<Theta> {
    tracing::info!("Reading prior from {}", path);
    let file = File::open(path).context(format!("Unable to open the prior file '{}'", path))?;
    let mut reader = csv::ReaderBuilder::new()
        .has_headers(true)
        .from_reader(file);

    let mut parameter_names: Vec<String> = reader
        .headers()?
        .clone()
        .into_iter()
        .map(|s| s.trim().to_owned())
        .collect();

    // Remove "prob" column if present
    if let Some(index) = parameter_names.iter().position(|name| name == "prob") {
        parameter_names.remove(index);
    }

    // Check and reorder parameters to match names in settings.parsed.random
    let random_names: Vec<String> = settings.parameters().names();

    let mut reordered_indices: Vec<usize> = Vec::new();
    for random_name in &random_names {
        match parameter_names.iter().position(|name| name == random_name) {
            Some(index) => {
                reordered_indices.push(index);
            }
            None => {
                bail!("Parameter {} is not present in the CSV file.", random_name);
            }
        }
    }

    // Check if there are remaining parameters not present in settings.parsed.random
    if parameter_names.len() > random_names.len() {
        let extra_parameters: Vec<&String> = parameter_names.iter().collect();
        bail!(
            "Found parameters in the prior not present in configuration: {:?}",
            extra_parameters
        );
    }

    // Read parameter values row by row, keeping only those associated with the reordered parameters
    let mut theta_values = Vec::new();
    for result in reader.records() {
        let record = result.unwrap();
        let values: Vec<f64> = reordered_indices
            .iter()
            .map(|&i| record[i].parse::<f64>().unwrap())
            .collect();
        theta_values.push(values);
    }

    let n_points = theta_values.len();
    let n_params = random_names.len();

    // Convert nested Vec into a single Vec
    let theta_values: Vec<f64> = theta_values.into_iter().flatten().collect();

    let theta_matrix: Mat<f64> =
        Mat::from_fn(n_points, n_params, |i, j| theta_values[i * n_params + j]);

    let random = settings
        .parameters()
        .iter()
        .filter(|p| !p.fixed)
        .collect::<Vec<_>>()
        .iter()
        .map(|p| (p.name.clone(), p.lower, p.upper))
        .collect();

    let theta = Theta::from_parts(theta_matrix, random, Vec::new());

    Ok(theta)
}