pmcore/routines/expansion/adaptative_grid.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
use faer::Row;
use crate::structs::theta::Theta;
/// Implements the adaptive grid algorithm for support point expansion.
///
/// This function generates up to 2 new support points in each dimension for each existing support point.
/// New support points are symmetrically placed around the original support point, at a distance of `eps` * (range_max - range_min).
/// If the new support point is too close to an existing support point, or it is outside the given range, it is discarded.
///
/// # Arguments
///
/// * `theta` - A mutable reference to a 2D array representing the existing support points.
/// * `eps` - A floating-point value representing the fraction of the range to use for generating new support points.
/// * `ranges` - A slice of tuples representing the range of values for each dimension.
/// * `min_dist` - A floating-point value representing the minimum distance between support points.
///
/// # Returns
///
/// A 2D array containing the updated support points after the adaptive grid expansion.
///
pub fn adaptative_grid(theta: &mut Theta, eps: f64, ranges: &[(f64, f64)], min_dist: f64) {
let mut candidates = Vec::new();
// Collect all points first to avoid borrowing conflicts
for spp in theta.matrix().row_iter() {
for (j, val) in spp.iter().enumerate() {
let l = eps * (ranges[j].1 - ranges[j].0); //abs?
if val + l < ranges[j].1 {
let mut plus = Row::zeros(spp.ncols());
plus[j] = l;
plus += spp;
candidates.push(plus.iter().copied().collect::<Vec<f64>>());
}
if val - l > ranges[j].0 {
let mut minus = Row::zeros(spp.ncols());
minus[j] = -l;
minus += spp;
candidates.push(minus.iter().copied().collect::<Vec<f64>>());
}
}
}
// Option 1: Check all points against the original theta, then add them
let keep = candidates
.iter()
.filter(|point| theta.check_point(point, min_dist, ranges))
.cloned()
.collect::<Vec<_>>();
for point in keep {
theta.add_point(point.as_slice());
}
// Option 2: Check and add points one by one
// Now add all the points after the immutable borrow is released
//for point in candidates {
// theta.suggest_point(point, min_dist, ranges);
//}
}
/*
#[cfg(test)]
mod tests {
use super::*;
use crate::structs::theta::Theta;
use faer::mat;
#[test]
fn test_expected() {
let original = Theta::from(mat![[1.0, 10.0]]);
let ranges = [(0.0, 1.0), (0.0, 10.0)];
let eps = 0.1;
let min_dist = 0.05;
let mut theta = original.clone();
adaptative_grid(&mut theta, eps, &ranges, min_dist);
let expected = mat![[1.0, 10.0], [0.9, 10.0], [1.0, 9.0]];
// Check that both matrices have the same number of rows
assert_eq!(
theta.matrix().nrows(),
expected.nrows(),
"Number of points in theta doesn't match expected"
);
// Check that all points in expected are in theta
for i in 0..expected.nrows() {
let expected_point = expected.row(i);
let mut found = false;
for j in 0..theta.matrix().nrows() {
let theta_point = theta.matrix().row(j);
// Check if points match (within small epsilon for floating-point comparison)
if (expected_point[0] - theta_point[0]).abs() < 1e-10
&& (expected_point[1] - theta_point[1]).abs() < 1e-10
{
found = true;
break;
}
}
assert!(
found,
"Expected point [{}, {}] not found in theta",
expected_point[0], expected_point[1]
);
}
// Check that all points in theta are in expected
for i in 0..theta.matrix().nrows() {
let theta_point = theta.matrix().row(i);
let mut found = false;
for j in 0..expected.nrows() {
let expected_point = expected.row(j);
// Check if points match (within small epsilon)
if (theta_point[0] - expected_point[0]).abs() < 1e-10
&& (theta_point[1] - expected_point[1]).abs() < 1e-10
{
found = true;
break;
}
}
assert!(
found,
"Point [{}, {}] in theta was not expected",
theta_point[0], theta_point[1]
);
}
}
#[test]
fn test_basic_expansion() {
// Create initial theta with a single point [0.5, 0.5]
let mut theta = Theta::from(mat![[0.5, 0.5]]);
// Define ranges for two dimensions
let ranges = [(0.0, 1.0), (0.0, 1.0)];
// Set expansion parameters
let eps = 0.1;
let min_dist = 0.05;
// Apply adaptive grid
adaptative_grid(&mut theta, eps, &ranges, min_dist);
// Should generate 4 new points around the original:
// [0.6, 0.5], [0.4, 0.5], [0.5, 0.6], [0.5, 0.4]
// Total 5 points including the original
assert_eq!(theta.matrix().nrows(), 5);
// Verify the original point is preserved
let matrix = theta.matrix();
let mut has_original = false;
for i in 0..matrix.nrows() {
let row = matrix.row(i);
if (row[0] - 0.5).abs() < 1e-10 && (row[1] - 0.5).abs() < 1e-10 {
has_original = true;
break;
}
}
assert!(has_original, "Original point should be preserved");
// Verify expansion points were created
let expected_points = vec![(0.6, 0.5), (0.4, 0.5), (0.5, 0.6), (0.5, 0.4)];
for (x, y) in expected_points {
let mut found = false;
for i in 0..matrix.nrows() {
let row = matrix.row(i);
if (row[0] - x).abs() < 1e-10 && (row[1] - y).abs() < 1e-10 {
found = true;
break;
}
}
assert!(found, "Expected point ({}, {}) not found", x, y);
}
}
#[test]
fn test_boundary_conditions() {
// Create initial theta with points near boundaries
let mut theta = Theta::from(mat![
[0.05, 0.5], // Near lower boundary in x
[0.95, 0.5], // Near upper boundary in x
[0.5, 0.05], // Near lower boundary in y
[0.5, 0.95], // Near upper boundary in y
]);
let ranges = [(0.0, 1.0), (0.0, 1.0)];
let eps = 0.1;
let min_dist = 0.05;
// Store original count
let original_count = theta.matrix().nrows();
adaptative_grid(&mut theta, eps, &ranges, min_dist);
// Each point should generate fewer than 4 new points due to boundaries
assert!(theta.matrix().nrows() > original_count);
assert!(theta.matrix().nrows() < original_count + 4 * 4);
// Verify no points are outside the range
let matrix = theta.matrix();
for i in 0..matrix.nrows() {
let row = matrix.row(i);
assert!(row[0] >= ranges[0].0 && row[0] <= ranges[0].1);
assert!(row[1] >= ranges[1].0 && row[1] <= ranges[1].1);
}
}
#[test]
fn test_min_distance_constraint() {
// Create initial theta with close points
let mut theta = Theta::from(mat![
[0.5, 0.5],
[0.55, 0.5], // Close to first point
]);
let ranges = [(0.0, 1.0), (0.0, 10.0)];
let eps = 0.1;
let min_dist = 0.15; // Large enough to prevent some points from being added
adaptative_grid(&mut theta, eps, &ranges, min_dist);
// We should have fewer points than the maximum possible expansion
// due to the minimum distance constraint
assert!(theta.matrix().nrows() < 2 + 2 * 4);
}
}
*/