1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
use ndarray::{Array1, Array2};
/// Prunes the `theta` array based on the `candidate` array and `limits`.
///
/// This function checks if the `candidate` support point is within the limits defined
/// by the user and also if is not too close to the current support points.
///
/// If the `candidate` is within the limits and is not too close to the current support points,
/// it is added to `theta`. Otherwise, it is discarded.
///
/// # Arguments
///
/// * `theta` - Current Support points.
/// * `candidate` - Candidate support point.
/// * `limits` - (min, max) limits for each dimension.
/// * `min_dist` - The minimum allowed distance between the candidate and the current support points.
pub fn prune(
theta: &mut Array2<f64>,
candidate: Array1<f64>,
limits: &[(f64, f64)],
min_dist: f64,
) {
for spp in theta.rows() {
let mut dist: f64 = 0.;
for (i, val) in candidate.clone().into_iter().enumerate() {
dist += (val - spp.get(i).unwrap()).abs() / (limits[i].1 - limits[i].0);
}
if dist <= min_dist {
// panic!("point discarded");
// tracing::debug!(
// "Prune: Rejected point:{}. Too close to existing support points dist:{}.",
// candidate,
// dist
// );
return;
}
}
theta.push_row(candidate.view()).unwrap();
}