use crate::{
prelude::{
algorithms::Algorithms,
routines::{
evaluation::{ipm::burke, qr},
output::{CycleLog, NPCycle, NPResult},
settings::Settings,
},
},
structs::{
psi::{calculate_psi, Psi},
theta::Theta,
},
};
use anyhow::bail;
use anyhow::Result;
use faer_ext::IntoNdarray;
use pharmsol::{
prelude::{
data::{Data, ErrorModel},
simulator::Equation,
},
Subject,
};
use faer::Col;
use ndarray::{
parallel::prelude::{IntoParallelRefMutIterator, ParallelIterator},
Array, Array1, ArrayBase, Dim, OwnedRepr,
};
use crate::routines::{initialization, optimization::SppOptimizer};
const THETA_F: f64 = 1e-2;
const THETA_D: f64 = 1e-4;
pub struct NPOD<E: Equation> {
equation: E,
ranges: Vec<(f64, f64)>,
psi: Psi,
theta: Theta,
lambda: Col<f64>,
w: Col<f64>,
last_objf: f64,
objf: f64,
cycle: usize,
gamma_delta: f64,
gamma: f64,
converged: bool,
cycle_log: CycleLog,
data: Data,
settings: Settings,
}
impl<E: Equation> Algorithms<E> for NPOD<E> {
fn new(settings: Settings, equation: E, data: Data) -> Result<Box<Self>, anyhow::Error> {
Ok(Box::new(Self {
equation,
ranges: settings.parameters().ranges(),
psi: Psi::new(),
theta: Theta::new(),
lambda: Col::zeros(0),
w: Col::zeros(0),
last_objf: -1e30,
objf: f64::NEG_INFINITY,
cycle: 0,
gamma_delta: 0.1,
gamma: settings.error().value,
converged: false,
cycle_log: CycleLog::new(),
settings,
data,
}))
}
fn into_npresult(&self) -> NPResult<E> {
NPResult::new(
self.equation.clone(),
self.data.clone(),
self.theta.clone(),
self.psi.clone(),
self.w.clone(),
-2. * self.objf,
self.cycle,
self.converged,
self.settings.clone(),
self.cycle_log.clone(),
)
}
fn equation(&self) -> &E {
&self.equation
}
fn get_settings(&self) -> &Settings {
&self.settings
}
fn get_data(&self) -> &Data {
&self.data
}
fn get_prior(&self) -> Theta {
initialization::sample_space(&self.settings).unwrap()
}
fn inc_cycle(&mut self) -> usize {
self.cycle += 1;
self.cycle
}
fn get_cycle(&self) -> usize {
self.cycle
}
fn set_theta(&mut self, theta: Theta) {
self.theta = theta;
}
fn get_theta(&self) -> &Theta {
&self.theta
}
fn psi(&self) -> &Psi {
&self.psi
}
fn likelihood(&self) -> f64 {
self.objf
}
fn convergence_evaluation(&mut self) {
if (self.last_objf - self.objf).abs() <= THETA_F {
tracing::info!("Objective function convergence reached");
self.converged = true;
}
if self.cycle >= self.settings.config().cycles {
tracing::warn!("Maximum number of cycles reached");
self.converged = true;
}
if std::path::Path::new("stop").exists() {
tracing::warn!("Stopfile detected - breaking");
self.converged = true;
}
let state = NPCycle {
cycle: self.cycle,
objf: -2. * self.objf,
delta_objf: (self.last_objf - self.objf).abs(),
nspp: self.theta.nspp(),
theta: self.theta.clone(),
gamlam: self.gamma,
converged: self.converged,
};
self.cycle_log.push(state);
self.last_objf = self.objf;
}
fn converged(&self) -> bool {
self.converged
}
fn evaluation(&mut self) -> Result<()> {
self.psi = calculate_psi(
&self.equation,
&self.data,
&self.theta,
&ErrorModel::new(
self.settings.error().poly,
self.gamma,
&self.settings.error().error_model().into(),
),
self.cycle == 1 && self.settings.config().progress,
self.cycle != 1,
);
if let Err(err) = self.validate_psi() {
bail!(err);
}
(self.lambda, _) = match burke(&self.psi) {
Ok((lambda, objf)) => (lambda, objf),
Err(err) => {
bail!(err);
}
};
Ok(())
}
fn condensation(&mut self) -> Result<()> {
let max_lambda = self
.lambda
.iter()
.fold(f64::NEG_INFINITY, |acc, &x| x.max(acc));
let mut keep = Vec::<usize>::new();
for (index, lam) in self.lambda.iter().enumerate() {
if *lam > max_lambda / 1000_f64 {
keep.push(index);
}
}
if self.psi.matrix().ncols() != keep.len() {
tracing::debug!(
"Lambda (max/1000) dropped {} support point(s)",
self.psi.matrix().ncols() - keep.len(),
);
}
self.theta.filter_indices(keep.as_slice());
self.psi.filter_column_indices(keep.as_slice());
let (r, perm) = qr::calculate_r(&self.psi);
let mut keep = Vec::<usize>::new();
let keep_n = self.psi.matrix().ncols().min(self.psi.matrix().nrows());
for i in 0..keep_n {
let test = r.col(i).norm_l2();
let r_diag_val = r.get(i, i);
let ratio = r_diag_val / test;
if ratio.abs() >= 1e-8 {
keep.push(*perm.get(i).unwrap());
}
}
if self.psi.matrix().ncols() != keep.len() {
tracing::debug!(
"QR decomposition dropped {} support point(s)",
self.psi.matrix().ncols() - keep.len(),
);
}
self.theta.filter_indices(keep.as_slice());
self.psi.filter_column_indices(keep.as_slice());
(self.lambda, self.objf) = match burke(&self.psi) {
Ok((lambda, objf)) => (lambda, objf),
Err(err) => {
return Err(anyhow::anyhow!("Error in IPM: {:?}", err));
}
};
self.w = self.lambda.clone();
Ok(())
}
fn optimizations(&mut self) -> Result<()> {
let gamma_up = self.gamma * (1.0 + self.gamma_delta);
let gamma_down = self.gamma / (1.0 + self.gamma_delta);
let psi_up = calculate_psi(
&self.equation,
&self.data,
&self.theta,
&ErrorModel::new(
self.settings.error().poly,
self.gamma,
&self.settings.error().error_model().into(),
),
false,
true,
);
let psi_down = calculate_psi(
&self.equation,
&self.data,
&self.theta,
&ErrorModel::new(
self.settings.error().poly,
self.gamma,
&self.settings.error().error_model().into(),
),
false,
true,
);
let (lambda_up, objf_up) = match burke(&psi_up) {
Ok((lambda, objf)) => (lambda, objf),
Err(err) => {
return Err(anyhow::anyhow!("Error in IPM: {:?}", err));
}
};
let (lambda_down, objf_down) = match burke(&psi_down) {
Ok((lambda, objf)) => (lambda, objf),
Err(err) => {
return Err(anyhow::anyhow!("Error in IPM: {:?}", err));
}
};
if objf_up > self.objf {
self.gamma = gamma_up;
self.objf = objf_up;
self.gamma_delta *= 4.;
self.lambda = lambda_up;
self.psi = psi_up;
}
if objf_down > self.objf {
self.gamma = gamma_down;
self.objf = objf_down;
self.gamma_delta *= 4.;
self.lambda = lambda_down;
self.psi = psi_down;
}
self.gamma_delta *= 0.5;
if self.gamma_delta <= 0.01 {
self.gamma_delta = 0.1;
}
Ok(())
}
fn logs(&self) {
tracing::info!("Objective function = {:.4}", -2.0 * self.objf);
tracing::debug!("Support points: {}", self.theta.nspp());
tracing::debug!("Gamma = {:.16}", self.gamma);
if self.last_objf > self.objf + 1e-4 {
tracing::warn!(
"Objective function decreased from {:.4} to {:.4} (delta = {})",
-2.0 * self.last_objf,
-2.0 * self.objf,
-2.0 * self.last_objf - -2.0 * self.objf
);
}
}
fn expansion(&mut self) -> Result<()> {
let psi = self.psi().matrix().as_ref().into_ndarray().to_owned();
let w: Array1<f64> = self.w.clone().iter().cloned().collect();
let pyl = psi.dot(&w);
let error_type = self.settings.error().error_model().into();
let sigma = &ErrorModel::new(self.settings.error().poly, self.gamma, &error_type);
let mut candididate_points: Vec<Array1<f64>> = Vec::default();
for spp in self.theta.matrix().row_iter() {
let candidate: Vec<f64> = spp.iter().cloned().collect();
let spp = Array1::from(candidate);
candididate_points.push(spp.to_owned());
}
candididate_points.par_iter_mut().for_each(|spp| {
let optimizer = SppOptimizer::new(&self.equation, &self.data, sigma, &pyl);
let candidate_point = optimizer.optimize_point(spp.to_owned()).unwrap();
*spp = candidate_point;
});
for cp in candididate_points {
self.theta
.suggest_point(cp.to_vec().as_slice(), THETA_D, &self.ranges);
}
Ok(())
}
}
impl<E: Equation> NPOD<E> {
fn validate_psi(&mut self) -> Result<()> {
let mut psi = self.psi().matrix().as_ref().into_ndarray().to_owned();
if psi.iter().any(|x| x.is_nan() || x.is_infinite()) {
tracing::warn!("Psi contains NaN or Inf values, coercing to 0.0");
for i in 0..psi.nrows() {
for j in 0..psi.ncols() {
let val = psi.get_mut((i, j)).unwrap();
if val.is_nan() || val.is_infinite() {
*val = 0.0;
}
}
}
}
let (_, col) = psi.dim();
let ecol: ArrayBase<OwnedRepr<f64>, Dim<[usize; 1]>> = Array::ones(col);
let plam = psi.dot(&ecol);
let w = 1. / &plam;
let indices: Vec<usize> = w
.iter()
.enumerate()
.filter(|(_, x)| x.is_nan() || x.is_infinite())
.map(|(i, _)| i)
.collect::<Vec<_>>();
if !indices.is_empty() {
let subject: Vec<&Subject> = self.data.get_subjects();
let zero_probability_subjects: Vec<&String> =
indices.iter().map(|&i| subject[i].id()).collect();
return Err(anyhow::anyhow!(
"The probability of one or more subjects, given the model, is zero. The following subjects have zero probability: {:?}", zero_probability_subjects
));
}
Ok(())
}
}